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Supersymmetric N = 1,2 point particle actions in four dimensions, substantially differing from
the Siegel’s one, are proposed as constrained dynamical systems. It is shown that upon second
quantization they yield the superfield theories of the N = 1 chiral- and vector supermultiplets as
well as the N = 2 matter and super-Maxwell multiplets in the harmonic superspace formalism,
In particular, there atises an alternative understanding of the concepts of harmonic analyticity
and harmonic charges of N = 2 superfields in terms of classical superparticle mechanics.

1. Introduction and Moetivation

Quantum theories of the ordinary scalar field and the bosonic string field indicate
a general pattern of transition via the process of first- and second quantization from
classical relativistic dynamical systems with constraints, describing single objects
(point particles or strings), to the corresponding gauge-invariant quantum field theories,
whose quanta are these objects (see, e.g. Ref. 1). In particular, a very important property
is the connection between the gauge symmetries of the classical single-object actions
and the gauge symmetries of the corresponding field actions which is elucidated by
means of the first-quantized BRST charge.2'3

In the context of superfield- and superstring field theories there has been much
interest in discussing Siegel’s superparticle*~% both due to the fact that it represents a
“zero-mode” approximation to the covariant Green-Schwarz superstring,’ as well as
because of the presence of a iocal fermionic symmetry playing a fundamental role both
in the superparticle- and superstring case.

Siegel’s superparticle, whose classical action reads:*

S= J dt[p,0.x" — pyd.0 — Ap* — Ypd], M

(where A and y are Lagrange multipliers and the Grassmann spinor § is Majorana or
Majorana-Weyl), describes upon second quantization physical supermultiplets only
on-shell* (cf. Eq. (2) below). Recently the action (1) as well its N = 2 generalization
were reconsidered® taking properly into account the functional dependence, i.c. the
reducibility in the sense of Ref. 9, of the two first class constraints:
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p*=0, pd=pip,— pb) =0,
93]
{pd, pd}p 5. = 2ip)p?,

where { , }pp denotes graded Poisson bracket.!® It was found that consistent
Lorentz-covariant canonical first- and second quantization of (1) off-shell is only
possible after:

(i) the introduction of bosonic Lorentz-spinor “harmonic” variables (in addition to
the usual superspace canonical coordinates (x, 0)), serving to covariantly separate the
half independent constraints from pd = 0 in (2);

(ii) an appropriate modification of (1) or its N = 2 version to ensure that these
harmonics are pure gauge degrees of freedom. Upon second quantization this N = 2
generalization of (1) with Lorentz-spinor harmonics yields a covariant description of
D = 10 type IIb supergravity!'! in terms of unconstrained superfields along the lines
of the covariant BRST second quantization scheme.® Also, the first-quantized BRST
charge of the modified superparticle contains higher order multighost terms.®

There exists another modification® of the action (1) in D = 10 where additional
Lorentz-vector harmonic variables are added and it describes after second quantiza-
tion certain type of D = 10 covariant light-cone harmonic superfield.

Our aim in the present note is to discuss the underlying superparticle actions in the
ordinary D = 4 case which upon second quantization yield off-shell the free massless
superfield theories of the N = 1 chiral--and vector supermultiplets as well as the N = 2
matter- and super-Maxwell multiplets in the harmonic superspace framework.!2'13
Here we propose the relevant D = 4 classical superparticle actions with N =1, 2
supersymmetry which possess besides reparametrization invariance various types of
local fermionic and/or local bosonic symmetries. These actions substantially differ
from (1). While in the N = 1 case the meaning of the local symmetries at the classical
level remains obscure, at the quantum level they constrain the superfields to describe
irreducible supermultiplets. In the N = 2 case the local symmetries provide an alter-
native simple way to understand from the point of view of classical superparticle
mechanics the origin of the concepts of harmonic analyticity and harmonic charges of
the N = 2 unconstrained harmonic superfields.'?

As a final introductory remark let us recall the general ideology for covariant second
quantization of constrained dynamical systems, starting from the covariant first-
quantized Dirac constraint equations.’ One of the constraint equations containing
p2=—0is interpreted as field equation of motion and the rest are viewed as
gauge-fixing conditions for certain gauge invariance(s) (that has(have) to be discovered)
of the corresponding field theory. A necessary condition for this scheme to provide an
off-shell, i.e. action-principle, description of the second-quantized theory is that the
subset of first~-quantized constraints which does not contain the “dynamical” constraint
(the constraint involving p?> = — []) must form a closed subalgebra under commuta-
tion. Such constraints are also called “kinematical”. Clearly, the Siegel’s fermionic
constraints are not kinematical as seen from (2), unlike the constraints presented below.

In our notation we follow Refs. 14, 12.
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2. N =1 Superparticlesin D = 4

Let us consider the following N = 1 superparticle actions:

Sy,cn = Jd‘c[p,ﬁ,x" + pgo.6, + Ppsd.0° — Hy 4], 3
Hy = 2p* + §x(d*d, + d;d ), (4.2)
Hch = A'pz + wa(_%d_zda) + !Z;d(_%dzd_i)a (4b)
where
da = ipﬂa - puB§B9 d_ni = iﬁod + pﬂdeﬂ' (5)

Clearly, d,, d; are the classical analogues of the N = 1 supercovariant derivatives:

0

D, -
09°

+ lé’aﬂ—e—ﬁ, 5& =

= 6—07 - iaﬂa'oﬁ.

The graded Poisson bracket relations!® among the canonical variables read:
(Poxten = =0"s (P Oen. = 6%,  {Pas0}pn =0 (6)
All objects (3)(6) are invariant under global N = 1 supersymmetry transformations:
o0, =¢,, 80, =%, Ox* = —i[e6"0 + eo*0],
ope* = ip*E;, O = —ipPe,,  6p,=0.
Both hamiltonians Hy, ., (4.2, b) are chosen as sums of first-class constraints with
Lagrange multipliers 4, y, ¢ including the usual bosonic point-particle constraint

p* = 0 corresponding to reparametrization invariance. S, possesses local bosonic
symmetry with parameter () generated by the nilpotent constraint {(d? + d 2):

00, = —ipd,,  Ops" = —Pp=d;, ox* = —p[0&*d + 0c*d],
— —_— . o (7)
60; = —ipd;,  Op, = pp~d,, Op,=0.

Scn possesses local fermionic symmetry with a Majorana spinor parameter x(r) =
(ko(1), ¥%(1)) generated by the fermionic constraint (—4d 2d,, —3d2d%).

36, = —4id_ 2, — %(Ed_)da, Spe* = —Hrd)pad; — Lpud’r;,
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i

50¢'=4

P+ ), 0 = —HERDP, — bR,

5x* = 4[(cd)(80*d) + (%d)(06*d)] + 1[d2(Bc*) + d*(0*®)],  Op,=0. (8)

From Eqs. (7) and (8) one immediately sees that as long as the parameters of the above
local symmetries appear multiplied by nilpotent functions of the canonical variables
one cannot use (7) and (8) to gauge away (part of) 0,, 6;.

Although, classically, the meaning of the constraints $(d + d2) and (—}d*d,,
—1d?d;)in Hy ., (4.2, b) remains unclear, it becomes very simple and transparent after
quantization. Indeed, according to the general theory,!® covariant first quantization
of (3), (4.a, b) is accomplished by imposing the following constraint equations on the
superfield wave function which we take as real scalar supetfield V(x, 6, ).

Ov=0, iD*+D*)V=0 ©))
for Sy, and:
Ov=0, W,=-4DD,V=0, W,=—iDD;¥=0 (10)

for S, respectively.

Now, applying the general scheme for covariant second quantization' (as mentioned
in Sec. 1) one easily infers that Egs. (9) are precisely the equation of motion and the
gauge-fixing condition for a free Maxwell superfield V describing the vector super-
multiplet whose gauge-fixed action reads: '*

S

ga

vecinv. F Se = I ax a0 wew, + hec. — (320 | dx a*0[(D? + D*)VT
8 4 4

1 _ _
= —lj‘d4xd‘0 Vi[O + (— - l)l(DZD2 + D*D*»)]V,
2 o 16

and provided a = 1 is chosen.

Likewise, we find that Eqgs. (10) are precisely the equation of motion and the
gauge-fixing conditions in the gauge-invariant description of the chiral superfield (see
e.g. Ref. 16).

®=1iD*V, ®=4iD?V. (11)
Indeed, according to the identity

O = #&(D*D* + D*D?) — }D*D?D,,
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one finds that Eqs. (10) are equivalent to:
D*D*V = D*D*V =0.
So for the “projected” chiral and antichiral superfields (11) we have
D=0, D*®=0,

which are precisely the equations of motion of the free chiral supermultiplet. The
corresponding gauge-invariant and gauge-fixing actions for V are:

Seaugeinv. = J d*x d*0 0 = —515 f d*xd*0 V[D*D* + D*D*1V, (12)

with gauge invariance ¥V - V + D%w, + D;®* (w,, ®@; being chiral (antichiral) spinor
superfields);

1
Ser. = —Id‘x d*6wW? + hc;
4o

1 1 1 _
Sgluge inv. + Sg.f. = _EJ‘d“x d40 | 4 I:D + §(1 — E) DEDZDG] V,

and once again the choice « = 1 is made to get Egs. (10).

We thus conclude that from the superparticle point of view the gauge-invariant
description (12) of the D = 4 chiral superfield (11) is more natural. In particular, the
chirality constraint D;® = 0 cannot be interpreted as first-quantized version of a
classical first-class constraint d; = 0, since the latter would violate the reality of the
classical action.

Let us also note the curious fact that the N = 1 chiral superfield theory may be
recovered (after second quantization) from a nonrelativistic supersymmetric point
particle system, the Lorentz invariance thus arising as dynamical symmetry.!’

3. N =2 Superparticlesin D = 4

Unlike the N = 1 case, the N = 2 version of Siegel’s action (1):
S = J‘d‘t[pnatxu + p:iateai + Eaa'iatgdi - )'pz + waipaﬁd_iﬁ + ‘Il—a'ippddpi]’

(di = ipiu - paﬁgﬁj, d_i = lﬁéﬂ + ’Ba’oﬁ)’ (1,)

can serve in a sense as the starting point to construct the correct N = 2 superparticle
actions leading to off-shell second-quantized N = 2 field theories.
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As already stressed in Ref. 8 and in Sec. 1 above, one has to separate the half
functionally independent (with respect to p? = 0) constraints from the constraints
pd; = (p,ﬁd_f,pi”dﬂi) =0 in (1'). Here we insist on preserving simultaneously both
Lorentz invariance and N = 2 supersymmetry with manifest SU(2) automorphism
group. This can be done only at the price of introducing additional bosonic degrees
of freedom. In the present case the most natural candidates for such additional degrees
of freedom are the spherical harmonics u}: 12

utyy =1, utiyt =0, ") =u;, uf ~ etioy? (13)

J J

The first three relations (13) define a parametrization of SU(2) and the last equivalence
relation (modulo U(1) phase transformations) in (13) specifies that in fact u;f parame-
trize SU(2)/U(1) = S2. With the help of u¥ (13) a Lorentz-covariant and N =2
supersymmetric functionally independent (with respect of the constraint p?> = 0) subset
of the Siegel’s fermionic constraints is taken in the form:

put d' = (puf AP, pPiut dy). (14)
Furthermore, we can drop the factors p in (14) since the resulting constraints:

d* =ufd' = (utdi,utd*) = (d},d )

continue to form a set of first-class constraints:®

— -
{d:9d;}P,B. = 09 { da:a'ppz}l'.B. = 0’

and, more importantly, the latter become already “kinematical” constraints.
Thus, we propose the following N = 2 superparticle actionsin D = 4;

Sq,l = Jdt[puatx” + p:iateai + ﬁaa'iataéi + pu_iatu? - p:‘atui_ - Hq,l]a (15)

H=Jp* +y™d} +y;d* + p(d*~ —q)+o"@**Y, (16)

with the additional second-class constraints:

* Here we use the same SU(2) and U(1) notations and conventions for the harmonics as in Refs. 12, 13:

Xt

utX', X=Xt (rindices +), Xy =Xy—Xp,  Xg =Xy + X

® If we take constraints d = 0 instead of pd = 0 in the action (1) then, because of the relation {d,,d,;} =
—2ip,;, the constraints d = 0 form a set of mixed second- and first-class constraints due to the non-
invertibility of the matrix p on the constraint surface p? = 0. This is precisely the case of the Brink-Schwarz
superparticle action (18) which has less physical degrees of freedom than (1).
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®;=uju; —g;=0, Xy =upy— uiPig =0. an
The basic graded Poisson bracket relations read:
{Poai, opj}p.& = 5aﬂ6ijs {ﬁodiagﬁj}l’.ﬂ. = 5&‘i6ij’ {PE‘", “ji }P.B. = 15‘;- (18)
All Egs. (15)—(18) are invariant under global N = 2 supersymmetry transformations:
00i=cl, opg=ipPey, O0y=Ty, OPG= —ipPiey,
ox* = —i[e/6"0; + ¢0*0,], op, =0, duf = 0.

The hamiltonian (16) once again is a sum of first class constraints with Lagrange
multipliers 4, ¥, p, 672" and where:

d*~ =utp, + u'pd, (19)
d*t = —utipl. (20)

The term pd™* ™ in (16) is necessary to maintain the local U(1) gauge-invariance of (15)
which accounts for the last equivalence relation in (13), p being the corresponding U(1)
gauge field:

pop—iba, piloetpl,  ut eyt (1)

The constraint d* ~ (19) in (16) is shifted by a constant g which clearly does not spoil
neither the first-class property of d* ~ nor the U(1) gauge-invariance of S, , (15) under
(21). The presence of the constant g may be understood as a result of ambiguity in the

normal ordering of the noncommutative factors in the first quantization of d*~ (19).
Moreover, ¢ must be an integer since the quantized version of d*~:

.0 .0
+- i Yt |
D" =u P u P (22)

possesses only integer eigenvalues (cf. Ref. 12).

Finally, we have added still another constraint (d**)' = 0 (I being a nonzero integer
power) in H, ; (16) which maintains the first-class property of the set of all constraints
in (16):

@, Qeton. = Aoy, {d7,(@** Mpp = 20d* Y,  rest=0. (23)

An important property of the second-class constraints @, x; (17) which form a
conjugate pair:
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{‘Dij, X“}p.n.lo.x=o = sijskl

is that they commute with all first-class constraints in H, , (16) except for:

) )
+ +
{Xip» dagiy }p.B. = &3 gy -

Thus, the algebra of the first-class constraints (23) remains unchanged after going on
to the Dirac bracket relations.

Le£ us note that the objects (15)—(17) are real with respect to the combined involu-
tion ~ introduced in Ref. 12:

* *
+i

*®
(ui)=u ’ (pu)=_p|ﬁ’ 5=P,

which combines ordinary complex conjugation with flipping of the }I(I) charges.
Classically, the local fermionic symmetry generated by d* = (dZ,d **) allows one to
gauge away half - of the 8%s (8% = u*6?)
(=) _ -8+ — T+f ) _ (=)=
00,4 = {x7Pdg + k5d P, Oyt = Likeg
whereas the harmonic constraints d*~, (d**)' can be used to gauge away only

part of uf. The meaning of these constraints becomes much more transparent after
quantization.

4. N = 2 Harmonic Superfields from N = 2 Superparticles

The covariant first-quantized Dirac constraint equations or, alternatively, the
second-quantized field equations of motion and the field theory gauge-fixing con-
ditions corresponding to the classical N = 2 superparticle (15)—(17) read;

v =0, (24.2)

()
DV =0, (24.b)
(D*™ —qV =0, (24.0)
(D**Yv =0, (24.d)

where V = V(x,67,u) is a general N = 2 harmonic superfield and

0 — — 0 :
D+ =yt — id Qb -yt —_—— —id,. bil-.
= U; <60j" + id ;0 ), Df =y ( pv id:0 ),

7

. 0
DYt = u*'—aF, D*~ asin (22).
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Now, Eq. (24.b) is immediately recognized as the condition for harmonic analyticity.!2
Next, Eq. (24.c) clearly represents the condition that V carries a definite U(1) charge
q. Both Eqgs. (23.b, ¢) were explicitly solved in Refs. 12 in terms of charged analytic
harmonic superfields. In order for Eqs. (24) to describe physical N = 2 supermultiplets
in D = 4 we have to specify the values of the integers g, I.

Let us first consider the case ¢ = 2, I = 1. Then, Eqgs. (24) are easily recognized as
describing the free N = 2 super-Maxwell multiplet ¥ * *. Indeed, let us recall*?-13 the
gauge-invariant action for ¥V = V**, where V** is analytic and carries U(1) charge
g = 2, i.e. satisfies Egs. (24.b, ¢} with ¢ = 2:

Seuei. = 3 | iy VG ) O GV G, 09
Here the following notations are used:
{=(x46%,0%), x4 = x* — 2i0%*0u} u; At = d*x,d*9",
(D* ) =(D*P(D*Y,  uiui =uiui.

One can choose the following gauge-fixing condition coinciding with Eq. (24.d) for
=1:

D++V++ — 0’

which corresponds to the gauge invariance of (25) under 6V** = —D**A with A
being an analytic superfield gauge parameter. Then the total gauge-fixed field action
for V** reads:!?

1
Se=2,1=1 = Sgavgeinv. + Sgr. = zj.dC(—‘)du vgv*t

1 1
+ 5(1 + &—)J‘d{"" duydu, Vi (DY Y (uiuz) 2V,

which, with the choice d = — 1, leads to Eq. (24.a) as equation of motion for V'**.

Following exactly the same line of analysis we find that the second-quantized N = 2
superparticle (15)—(17) with g =1, I = 1 represents the field theory of the N =2
Fayet-Sohnius matter supermultiplet!® described in terms of analytic harmonic super-
field V = g™ (¢, u) with field action: 12

_*
Se=1,1=1 = JdC"" du(q*)D**q"*.
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Likewise, in the case ¢ = 0, | = 2 the second-quantized N = 2 superparticle represents
the N = 2 relaxed hypermultiplet?® described in the harmonic superspace formalism
in terms of analytic harmonic superfield V = w({, ) with field action: 12

1
Sq=0,l=2 = 5 jdc(~4) du CU(D++)260.

Let us stress that considering Egs. (24.b, c) already explicitly solved, Eqs. (24.a) and
(24.d) turn out to play different roles when applied to describe N = 2 super-Maxwell
and N = 2 matter supermultiplets, respectively. In the former case Eq. (24.a) is the
equation of motion and D**V = 0(Eq. (24.d)) is a gauge-fixing condition, while in the
latter case (D**)V =0, = 1, 2, are in fact the equations of motion implying (24.2).

Recalling the interpretation of the Dirac constraint Eqgs. (24) within the general
scheme for covariant second quantization,! we could now conjecture that N =2
matter- and super-Maxwell multiplets may alternatively be described in terms of
general harmonic superfields V(x, 67, u) whose actions (which may not be localin N = 2
harmonic superspace):

1 .
Se1 = ijd(l)d@) VK, ((D,@)VQ),  ((1(2) = (x1,2.0] 2,11.2)),

possess vast gauge invariance(s) (including the usual Yang-Mills gauge invariance as
a subset) allowing the analyticity- and charge conditions (24.b, c) to be also imposed
as gauge-fixing conditions. Choosing different gauge-fixing conditions for this (these)
vast gauge invariance(s) one may arrive at new descriptions of the above N =2
supermultiplets in terms of N = 2 harmonic superfields satisfying conditions different
from analyticity and/or having a definite U(1) charge.
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